کوهمولوژی موضعی و زیر رسته های سر

thesis
abstract

فرض کنیمm یک r-مدول و a یک ایدآل از حلقه r باشد. کلاس s از r-مدول ها، زیر رسته سر از رسته r-مدول هاست در صورتیکه تحت تحت زیر مدولها، مدولهای خارج قسمتی و توسیع مدولها بسته باشد.عضویت مدول های کوهمولوزی موضعی، در زیر رسته سر از رستهr-مدول ها به ازای in بررسی شده است.دنباله های s-منظم و تعمیم یافتگی عمق تعریف شده است و رابطه این نماد با کوهمولوژی موضعی بیان شده است.از طرفی اگر m یک r-مدول متناهی مولد باشد، برای هر i>n عضویت کوهمولوژی موضعی تنها به محمل m وابسته است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

کوهمولوژی موضعی و زیر رسته های سر

بررسی i_امین مدل های کوهمولوژی موضعی برای in.

15 صفحه اول

زیر رسته های سر و کوهمولوژی مدول های موضعی.

می گوییم کاتگوری sدر شرط سر صدق می کند اگر نسبت یه زیر عضو و خارج قسمت و توسیع بسته باشد.زیر مدول های آرتینی و نوتری در خاصیت سر صدق می کنند. در این رساله مطالب رادر حالت کلی تری به کاتگوری های آبلی تعمیم داده ایم. به طوری که تعاریف جدیدی مانند بعد ، تصویری و انژکتیوی بودن اشیا متناسب با خاصیت سر آورده ایم.در فصل اول تعاریف اولیه را یاداوری می کنیم. در فصل دوم شرایط ملکرسون را اورده و ارتباط ان...

زیر رسته های سر و کوهمولوژی مدول های موضعی

در فصل اول مفاهیم مقدماتی و قضایای لازم از مدول های کوهمولوژی موضعی را بیان می کنیم. در فصل دوم می خواهیم شرط اینکه این مدول ها متعلق به خاصیت سر باشند را بررسی کنیم. در ادامه شرط ملکرسون را تعریف می کنیم و در مورد جمع و ضرب و اشتراک دو ایده آل که در شرط ملکرسون صدق می کنند را بررسی می کنیم. همچنین این شرط را در مورد ایده آل های اول مینیمال بررسی می کنیم. در فصل سوم تعاریف جدیدی از خاصیت سر در ...

کوهمولوژی موضعی و زیر کاتگوری سرِ

در سراسر این پایان نامه فرض می کنیم r–حلقه ای نوتری، a یک ایده آل r و m یک r–مدول باشد. مدول های کوهمولوژی موضعی اولین بار توسط گروتندیگ معرفی شد و یکی از زمینه های مهم تحقیقاتی در هندسه جبری و جبر جابجایی می باشد. مدول های مینیماکس نیز نخستین بار توسط زوشنگر تعریف و در مقاله معروفش تحت همین نام مورد مطالعه قرار گرفت و نتایج جالبی توسط خود زوشنگر ثابت شده است. به عنوان مثال هر مدول نوتری و آرتی...

15 صفحه اول

کوهمولوژی موضعی و زیرکاتگوری سر از کاتگوری مدول ها

در این رساله n-امین مدول کوهمولوژی موضعی ازr-مدول m در یک زیرکاتگوری سر از کاتگوری r-مدولها از پایین (in)مطالعه می شوند. در حالت کلی عمق و رشته های منظم تعریف می شوند. رابطه آنها با کوهمولوژی موضعی نشان می دهد که مطالعه مدولهای کوهمولوژی موضعی یک r-مدول متناهی مولد از بالا در یک زیرکاتگوری سر از کاتگوری r-مدولها فقط به تکیه گاه مدول بستگی دارد.

15 صفحه اول

بررسی مدول های کوهمولوژی موضعی تعریف شده توسط جفت ایده آلها و زیررسته های سر

فرض کنیم ‎$rhspace{1mm}$‎ حلقه ای جابجایی، یکدار، نوتری و ‎$i$‎ و ‎$j$‎ ایده آل هایی از آن باشند. هم چنین فرض کنیم ‎$m$‎ یک ‎$r$-‎مدول و ‎$t$‎ عدد صحیح نامنفی باشد. ابتدا ثابت کرده ایم که اگر ‎$mathrm{ext}^t_r(r/i,m)$‎ یک ‎$r$-‎مدول متناهی و ‎${h}^t_i(m)$‎ یک ‎$r$-‎مدول مینی ماکس و برای هر ‎$i<t$‎، ‎${h}^i_i(m)$‎ مدول های ‎$i$-‎هم متناهی باشند، آنگاه ‎${h}^t_i(m)$‎ یک ‎$r$-‎مدول ‎$i$-‎هم مت...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023